Forschungspublikationen

18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Das in diesem Forschungsprojekt entwickelte textilbasierte Sensorkonzept wurde auf der Garn- und Verbundebene elektromechanisch charakterisiert und wurde im Multiaxialkettenwirken zu funktionalisierten Gelegen und fortführend in etablierten Verbundbildungstechnologien zu CFK-Proben weiterverarbeitet sowie umfangreich in Zug-, Druck- und Biegeversuchen charakterisiert. Anhand eines CFK-Profil Demonstrators wurde die praktische Umsetzbarkeit und Funktionsfähigkeit erprobt und bewiesen. Diese „Smart-Composites“ ermöglichen nicht nur eine kontinuierliche In-situ-Strukturüberwachung von FKV-Bauteilen unter Zug-, Biege- und vor allem Druckbeanspruchung, sondern können auch für die Detektion von Riss- und Delaminationsvorgängen eingesetzt werden. Dadurch können sowohl das Verständnis des Materialverhaltens verbessert und für zukünftige Auslegungen berücksichtigt als auch erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit des Gesamtsystems eingeleitet werden.

Bericht

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Development of Textile Structures with Material-Intrinsic Shape Changing Capabilities for Regenerative Medicine (TexMedActor)

Garne Gewebe Nachhaltigkeit Technische Textilien Medizin

Zusammenfassung

In the IGF project 21022 BR/1 "TexMedActor", fabrics based on shape memory or electroactive yarns were developed which are capable of enclosing defects in hollow organs on the one hand and stimulating cells by micro-movements on the other. For this purpose, influences of spinning process and material composition on the shape memory behavior of TPU-based yarns were characterized and, in particular, the activation temperature was adjusted to values of the body core and body surface temperature. Furthermore, piezoelectric PVDF yarns were developed whose proportion of polar crystal phases was significantly increased by the spinning parameters and post-treatment, which also increased the piezoelectric behavior of the material. This allowed dynamic changes in pore size to be demonstrated in situ, which can have a stimulating effect on cells. With a new process and a new product group (textiles with intrinsic, active shape-changing capability), the results offer high innovation potential not only for medical devices, but also for a wide range of lucrative applications in a variety of niches, such as sports textiles and filter textiles. Furthermore, these can be used as a basis for the development of extracorporeal medical products such as compression textiles, bandages and orthoses.

Bericht

Introduction and Objective

In Germany, both demographic changes in society and injuries resulting from trauma are leading to a high proportion of people with cardiovascular diseases or injuries to vessels and internal organs requiring treatment. Treatment of injuries to internal organs, vessels, or nerves usually requires complex procedures (anastomoses) that involve elaborate fixation and suturing. These complicated and elaborate procedures are often associated with long procedure times, which in turn directly correlate with increased complication rates [1-3]. Tubular plastic implants are increasingly being developed to bridge such defects. These single material structures do not allow tissue/ cell ingrowth. Therefore, they run counter to the concept of regenerative medicine, which aims to restore body tissues and cells. In addition, when the defects are filled, regeneration is often disturbed due to the structural-mechanical properties that are not adapted to biomechanics. Furthermore, the lack of interconnectivity of the pore spaces of the replacement structures prevents the cell ingrowth, cell growth, nutrient supply and the removal of metabolic products.

In the context of in vitro tissue engineering, in addition to static cell culture systems, dynamic systems are also being developed. These are based, for example, on continuous or pulsating fluid flows or on a cyclic stretching of a clamped cell support system or substrate [4]. However, a replication of natural mechanical growth stimuli is not possible with such bioreactor systems because, especially in larger structures, there is a locally increased flow velocity along the largest pores or only an overflow of the entire cell support system. Additionally, undesirable stress peaks and undefined distortions occur in the region of the clamps and supports in mechanically stimulated systems.

Since the native structure of the four most important tissue types (connective and supporting tissue, nervous, muscular and epithelial tissue) from which organs, such as bones, blood vessels, muscles, tendons and ligaments, are formed, consists of fiber-like constructs, these can be particularly well biomimicked with textile structures. With the help of pre-designed fiber arrangements, three-dimensional, complex geometries with interconnecting pore spaces can be built up. The cells can use these structures to orient themselves in their growth direction [5]. Therefore, fiber-based high-tech structures are particularly predestined to overcome the limitations of currently available implants.

Therefore, within the framework of the IGF research project TexMedActor (21022 BR/1) novel textile structures with material-intrinsic shape changing capabilities were developed for regenerative medicine with a variety of different application fields, especially anastomosis. The concept pursued envisages the textile-technological realization of structures with a shape memory effect. The textiles should be able to assume predetermined geometries in order to adapt interactively to defects and to simplify complex interventions to bridge or support defects in internal organs like vessel and nerves. Furthermore, these textiles are intended to enable electromechanical stimulation for the actively targeted stimulating of cell growth. In this way, regeneration is accelerated or even made possible in the first place, since the necessary stimuli for tissue- and cell-adapted growth stimulation are lacking, especially in the case of body tissues with weak or no blood supply, such as cartilage, tendons, ligaments, or in the case of wound healing disorders or chronic wounds. Furthermore, novel bioreactors based on the intrinsic properties of the textile structures will be developed, which use the mechanism of action for electromechanical stimulation to uniformly stimulate the cells at each site even in highly complex and large-scale cell carrier structures. Here, the mechanical stimuli originate from the material itself. This material-intrinsic stimulation represent a new method for optimal cell cultivation, by stimulating cell on the textile cell carrier structures without externally applied fluid flows or mechanical deformation. This is intended to overcome two recognized medical technology problems: 1) complicated, costly operations on internal organs, vessels or nerves that are difficult or impossible to perform with minimally invasive procedures, and 2) lack of tissue- and cell-adapted stimuli for promotion of growth in previously used replacement structures and materials as well as currently available dynamic cell culture systems.

Acknowledgement

The IGF project 21022 BR/1 of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the program for the promotion of joint industrial research (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources. Furthermore, we want to thank the member of the “Projektbegleitender Ausschuss” (project accompanying committee) for their support during the project.

AutorInnen: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Entwicklung von Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin (TexMedActor)

Garne Gewebe Nachhaltigkeit Technische Textilien Medizin

Zusammenfassung

Im IGF-Projekt 21022 BR/1 „TexMedActor“ wurden Gewebe auf Basis von Formgedächtnis- bzw. Elektroaktiven-Garnen entwickelt, die in der Lage sind, einerseits Defekte an Hohlorganen zu umschließen und andererseits durch Mikrobewegungen Zellen stimulieren zu können. Dafür wurden Einflüsse von Spinnverfahren und Materialzusammensetzung auf das Formgedächtnisverhalten TPU-basierter Garne charakterisiert und insbesondere die Aktivierungstemperatur auf Werte der Körperkern- und Körperoberflächentemperatur eingestellt. Weiterhin wurde piezoelektrische PVDF-Garne entwickelt, deren Anteil polarer Kristallphasen durch die Spinnparameter und Nachbehandlung deutlich erhöht war, wodurch auch das piezoelektrische Verhalten des Materials gesteigert werden konnte. Damit konnten dynamische Veränderungen der Porengröße in situ nachgewiesen werden, die eine stimulierende Wirkung auf Zellen entfalten können. Die Ergebnisse bieten mit einem neuen Verfahren und einer neuen Produktgruppe (Textilien mit intrinsischem, aktivem Formänderungsvermögen) nicht nur bei Medizinprodukten ein hohes Innovationspotenzial, sondern auch bei einer Vielzahl von lukrativen Anwendungen in einer Vielzahl von Nischen, z. B. Sporttextilien und Filtertextilien. Diese können weiterhin als Basis zur Entwicklung von extrakorporalen Medizinprodukten wie Kompressionstextilien, Bandagen und Orthesen genutzt werden.

Bericht

Einleitung, Problemstellung und Zielsetzung

In Deutschland führt sowohl der demografische Wandel der Gesellschaft als auch Verletzungen infolge von Traumata zu einem hohen Anteil von Personen mit behandlungsbedürftigen Erkrankungen des Herz-Kreislauf-Systems oder Verletzungen an Gefäßen und inneren Organen. Zur Behandlung von Verletzungen an inneren Organen, Gefäßen oder Nerven sind meist komplexe Eingriffe (Anastomosen) erforderlich, bei denen aufwändige Fixierungen und Nahtführungen erforderlich sind. Diese komplizierten und aufwändigen Prozeduren sind häufig mit langen Eingriffszeiten verbunden, die wiederum direkt mit erhöhten Komplikationsraten korrelieren [1‑3]. Zur Überbrückung solcher Defekte werden zunehmend tubuläre Kunststoffimplantate entwickelt, die jedoch kein Einwachsen von Gewebezellen ermöglichen und damit dem Konzept der regenerativen Medizin entgegenstehen, das die Wiederherstellung von Körpergeweben und ‑zellen anstrebt. Darüber hinaus kommt es bei der Auffüllung der Defekte häufig zu Störungen der Regeneration durch die nicht an die Biomechanik angepassten strukturmechanischen Eigenschaften. Ferner verhindern die fehlende Interkonnektivität der Porenräume der Ersatzstrukturen das Einwachsen von Zellen, das Zellwachstum, die Nährstoffversorgung und den Abtransport der Stoffwechselprodukte.

Im Rahmen des in vitro Tissue Engineerings werden neben statischen Zellkultursystemen auch dynami­sche Systeme entwickelt. Diese basieren beispielsweise auf kontinuierlichen oder pulsierenden Flüssigkeitsströmungen oder auf einer zyklischen Dehnung des eingespannten Zellträgersystems bzw. der Unterlage [4]. Eine Nachbildung der natürlichen mechanischen Wachstumsstimuli ist mit solchen Bio­reaktorsystemen jedoch nicht möglich, da sich insbesondere in größeren Strukturen eine lokal erhöhte Strömungsgeschwindigkeit entlang der größten Durchgangsporen bzw. lediglich eine Überströmung des gesamten Zellträgersystems einstellt und in mechanisch stimulierten Systemen unerwünschte Spannungsspitzen und undefinierte Verzerrungen im Bereich der Klemmen und Auflagen auftreten.

Da der native Aufbau der vier wichtigsten Gewebetypen (Binde- und Stützgewebe, Nerven-, Muskel- und Epithelgewebe) aus denen Organe, wie Knochen, Blutgefäße, Muskeln, Sehnen und Bänder, gebildet sind, aus faserartigen Konstrukten besteht, lassen sich diese mit textilen Strukturen besonders gut biomimetisch nachbilden. Mithilfe vorbedachter Faseranordnungen können dreidimensionale, kom­plexe Geometrien mit interkonnektierenden Porenräumen aufgebaut werden, an der sich Zellen in ihrer Wachstumsrichtung orientieren können [5]. Deshalb sind faserbasierte High‑Tech Strukturen zur Überwindung der Limitationen aktuell verfügbarer Implantate besonders prädestiniert.

Daher wurden im Rahmen des IGF-Forschungsvorhabens TexMedActor (21022 BR/1) neuartige Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin mit einer Vielzahl von unterschiedlichen Anwendungsfeldern, insbesondere der Anastomose, entwickelt. Das verfolgte Konzept sieht hierbei die textiltechnologische Realisierung von Strukturen mit einem Formgedächtniseffekt vor. Die Textilien sollen gezielt vorbestimmte Geometrien annehmen können, um sich an Defekte interaktiv anzupassen und um komplexe Eingriffe zum Überbrücken bzw. zum Stützen von Defekten an inneren Organen wie Gefäßen und Nerven zu vereinfachen. Ein weiterer Wirkmechanismus soll darüber hinaus die elektromechanische Stimulation mit dem Ziel der aktiven, gezielten Anregung des Zellwachstums ermöglichen. Somit soll die Regeneration beschleunigt bzw. überhaupt erst ermöglicht werden, da die erforderlichen Stimuli zur gewebe- und zellangepassten Wachstumsanregung insbesondere bei schwach bzw. nicht durchbluteten Körpergeweben, wie Knorpeln, Sehnen, Bändern, oder bei Wundheilungsstörungen oder chronischen Wunden fehlen. Es sollen weiterhin neuartige Bioreaktoren mittels intrinsischen Eigenschaften der textilen Strukturen entwickelt werden, die den Wirkmechanismus zur elektromechanischen Stimulation nutzen, um selbst in hochkomplexen und großskaligen Zellträgerstrukturen die Zellen an jeder Stelle gleichmäßig zu stimulieren. Die mechanischen Reize gehen hierbei vom Material selbst aus. Diese materialintrinsische Stimulation stellt eine neue Methode für die optimale Zellkultivierung dar, sodass die Zellen auf den textilen Zellträgerstrukturen unter Verzicht auf extern angelegte Flüssigkeitsströmungen oder mechanische Verformungen stimuliert werden können. Damit sollen zwei anerkannte medizintechnische Probleme behoben werden: 1) Komplizierte, aufwändige und mit minimalinvasiven Verfahren schwer oder nicht zu realisierende Operationen an innenliegenden Organen, Gefäßen oder Nerven sowie 2) fehlende gewebe- und zellangepassten Stimuli zur Anregung des Wachstums seitens der bisher verwendeten Ersatzstrukturen und ‑materialien sowie derzeit verfügbarer dynamischer Zellkultursysteme.

Danksagung

Das IGF-Vorhaben 21022 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

AutorInnen: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

DigiPEP: Components designed according to the load path

Composites Technische Textilien

Zusammenfassung

Developing components made of fibre-reinforced plastics, is often performed with the focus on the lightweight construction aspect. For this purpose, the occurring load cases are determined on the basis of the boundary conditions and forces. Afterwards, the component is designed accordingly. If this intention is taken even further, the method is usually assigned to the field of Tailored Textiles. Tailored Textiles are, as the term suggests, textiles that are manufactured to suit the application. This also includes the Tailored Fibre Placement (TFP) process. In this process, rovings can be laid down and stitched in a variable axial direction. With this type of placement, embroidery patterns can be created according to the load cases that occur in the moulded component. The process is thus extremely low in waste and can be used for local reinforcement in the form of inserts or as an entire component with an enormous lightweight construction approach. In combination with low acquisition and process costs, the process offers great potential, especially for SMEs.

Bericht

During the product engineering process (PEP) of fibre composite components made from TFP preforms, a large number of iterations is necessary to ensure the desired properties in the finished component. Especially the interaction of the different process steps from roving deposition, draping to infusion and the occurring interactions complicate the component design. In order to link the required design processes and thus reduce the number of iterations as much as possible, the Model Based Systems Engineering (MBSE) approach is used in the DigiPEP project (see Fig. 1). This approach makes it possible to integrate the different models and assign tasks to individual responsible persons. The overall aim is to create a model with a user interface that requires only the most important boundary conditions and decisions from the responsible person. Models for structural analysis, stick path design, topology optimisation, draping and failure analysis of the finished component are to be integrated into the model. Furthermore, a cost estimation as well as a form of life cycle analysis shall be enabled. The generated model will be validated by the design of a demonstrator component. This demonstrator component can be located in the field of future transport and production.

The two-year project is funded by the Federal Ministry of Economics and Climate Protection (BMWK) as part of the Lightweight Construction Technology Transfer Programme under funding number 03LB3063A. The following partners are involved in the project: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

AutorInnen: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

DigiPEP: Lastpfadgerecht-ausgelegte Bauteile

Composites Technische Textilien

Zusammenfassung

Bei Entwicklungen von Bauteilen aus faserverstärkten Kunststoffen steht häufig der Leichtbauaspekt im Vordergrund. Dazu werden die auftretenden Lastfälle anhand der Randbedingungen und Kräfte bestimmt und anschließend das Bauteil entsprechend ausgelegt. Wird dieser Ansatz noch weiter ausgereizt, so wird die Methode meist den Tailored Textiles zugeordnet. Tailored Textiles sind, wie es der Begriff bereits vermuten lässt, Textilien, die auf den Anwendungsfall abgestimmt hergestellt werden. Dazu gehört ebenfalls das Tailored Fibre Placement (TFP) Verfahren. Dabei können Rovings variabel-axial abgelegt und festgestickt werden. Durch diese Art der Ablage können Stickmuster gemäß den auftretenden Lastfällen im geformten Bauteil erstellt werden. Das Verfahren ist somit extrem verschnittarm und kann zur lokalen Verstärkung in Form von Inserts eingesetzt werden oder als gesamtes Bauteil mit einem enormen Leichtbauansatz verwendet werden. In Kombination mit geringen Anschaffungs- und Prozesskosten bietet das Verfahren besonders für KMU ein großes Potential.

Bericht

Während des Produktentstehungsprozesses (PEP) von Faserverbundbauteilen aus TFP-Preforms ist eine Vielzahl von Iterationen notwendig um die gewünschten Eigenschaften im fertigen Bauteil zu gewährleisten. Vor allem das Zusammenspiel der verschiedenen Prozessschritte von der Roving-Ablage, der Drapierung bis hin zur Infusion und die auftretenden Wechselwirkungen erschweren die Bauteilauslegung. Um die benötigten Auslegungsprozesse zu verknüpfen und so die Anzahl der Iterationen möglichst zu reduzieren wird im Rahmen des DigiPEP-Projektes der Model Based Systems Engineering (MBSE) Ansatz verwendet (siehe Abb. 1). Dieser Ansatz ermöglicht eine Integration der verschiedenen Modelle und eine Zuordnung der Aufgaben zu einzelnen Verantwortlichen. Insgesamt soll somit ein Modell mit einem User Interface entstehen, das nur die wichtigsten Randbedingungen und Entscheidungen von dem jeweiligen Verantwortlichen erfordert. In das Modell sollen Modelle zur Strukturanalyse, Stickpfadauslegung, Topologie-Optimierung, Drapierung und Versagensanalyse des fertigen Bauteils integriert werden. Darüber hinaus soll eine Kosteneinschätzung sowie eine Form der Lebenszyklusanalyse ermöglicht werden. Um die verschiedenen Modelle zu erzeugen und eine Datenbasis aufzubauen, wird u.a. das Ablageverhalten verschiedener Materialien untersucht sowie mechanische Prüfungen an Probenkörper durchgeführt. Dabei werden die Produktionsparameter variiert, um deren Einfluss auf die mechanischen Eigenschaften zu untersuchen. Diese Variation wird ebenfalls zur Untersuchung des Drapierverhaltens verwendet. Zur Repräsentation des Drapierverhaltens im Modell soll eine Datenbasis aus qualitativen Versuchen erzeugt und mittels Künstlicher Intelligenz in das MBSE-Modell integriert werden.

Das erzeugte Modell wird anhand der Auslegung eines Demonstrator-Bauteils validiert. Dieses Demonstrator-Bauteil stammt aus dem Bereich des zukünftigen Transportes und der Produktion der Zukunft. Das erzeugte MBSE-Modell soll durch das erstellte Userinterface einfach bedienbar sein. Als Einsatzgebiet zielt das Projekt besonders auf KMU ab, um für diese den Einsatz der TFP-Technologie zu vereinfachen und die Auslegung neuer Bauteile zu beschleunigen. Darüber hinaus wird angestrebt durch die Software eine grobe Kosten- sowie Nachhaltigkeitsabschätzung zu ermöglichen. Damit kann der Anwender vor der genaueren Planung bereits erste Aussagen gegenüber dem Kunden treffen.

Das auf zwei Jahre ausgelegte Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Technologietransferprogramms Leichtbau unter der Fördernummer 03LB3063A gefördert. An der Bearbeitung sind die folgenden Partner beteiligt: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

AutorInnen: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

Patientenindividuelle Textilimplantate: Gewirkte Maschenwaren in Losgröße 1-Fertigung

Gestricke & Gewirke Technische Textilien

Zusammenfassung

Die patientenorientierte Gesundheitsversorgung macht die Individualisierung der Medizin unabdingbar. Dies erfordert Fortschritte in der Patientenindividualisierung, insbesondere durch die Medizintechnik, um den gewünschten Therapieerfolg zu erzielen. Dem steht aus technischer und wirtschaftlicher Sicht die Forderung nach einer wirtschaftlichen und reproduzierbaren Herstellung von Produkten mit der Losgröße 1 gegenüber, die mit innovativen textilen Herstellungsverfahren erfüllt werden kann. Es fehlt jedoch an einem grundlegenden Verständnis von Produktdesign, Endprodukteigenschaften und zwischengeschalteten Herstellungsprozessen sowie an geeigneten Werkzeugen für die Umsetzung dieser patientenindividuellen Ansätze.

Ziel des Projekts ist es, einen Herstellungsprozess für patientenindividuelle Textilimplantate zu implementieren, um Patienten eine optimal auf ihre Bedürfnisse zugeschnittene Therapie zu ermöglichen. Als Anwendungsbeispiel dienen Implantate zur Behandlung von Aortenaneurysmen, da dies ein sowohl klinisch als auch wirtschaftlich äußerst relevantes Einsatzgebiet für patientenindividuelle Implantatstrukturen ist.

Um das Projektziel zu erreichen, wurden Ansätze zur geometrischen und strukturellen Patientenindividualisierung von textilen Implantatstrukturen untersucht. Über eine durchgängige digitale Prozesskette wurde ein datenbankgestütztes virtuelles Modell zur Produktgestaltung entwickelt. Die Wechselwirkungen zwischen dem virtuellen Produktdesign, den Prozessparametern des Fertigungsprozesses und den resultierenden Implantateigenschaften wurden sowohl inline als auch offline ermittelt. Für die Inline-Erfassung der Prozessparameter wurden geeignete Werkzeuge entwickelt und implementiert. Diese erfassten Daten werden in die virtuelle Modelldatenbank zurückgespielt und verbessern so kontinuierlich die Genauigkeit und Robustheit der patientenindividuellen Konstruktion und Fertigung von Implantatstrukturen. Auf diese Weise kann eine wirtschaftliche und reproduzierbare Produktion von textilen Implantaten mit einer Losgröße von 1 realisiert werden, die eine optimal auf den Patienten zugeschnittene Therapie ermöglicht.

Bericht

Einleitung
Der demografische Wandel und ein zunehmend ungesunder Lebensstil in der westlichen Welt führen zu einer stetig steigenden Zahl von Patienten mit Herz-Kreislauf-Erkrankungen und stellen die moderne Medizin vor große Herausforderungen. Mit der zunehmenden Zahl von Behandlungen steigt auch die Zahl der Patienten, die aufgrund ihrer individuellen Anatomie oder Physiologie für eine Behandlung mit Standardprodukten nicht geeignet sind. Dies betrifft etwa 40% aller Patienten der jährlich in Deutschland durchgeführten rund 21.000 endovaskulären Behandlungen von Aortenaneurysmen. Eine patientenorientierte Gesundheitsversorgung macht daher eine Individualisierung der Medizin notwendig [2]. Dies erfordert auch ein Fortschreiten der Patientenindividualisierung durch die Medizintechnik, um den gewünschten Therapieerfolg zu erzielen. Diese individualisierten Implantate sollten exakt auf die spezifische Anatomie des Patienten zugeschnitten sein und auf Basis eines medizinischen Bilddatensatzes in Losgröße 1 hergestellt werden. Auf diese Weise wird eine Versorgung der lebenswichtigen Abgänge der Aorta gewährleistet. Aus technischer und wirtschaftlicher Sicht steht der Individualisierung die Bedingung einer wirtschaftlichen und reproduzierbaren Herstellung von Produkten mit Losgröße 1 gegenüber. Diese Anforderungen können mit innovativen textilen Fertigungsverfahren erfüllt werden. Die Kettenwirktechnik im Allgemeinen und die Jacquard-Wirktechnik im Besonderen erfüllen die notwendigen Anforderungen, sind aber in hohem Maße bedienerabhängig. Das enorme Potenzial der Jacquard-Wirktechnologie für die Herstellung von textilen Implantaten wird derzeit nicht genutzt, da keine Erfahrungen über die Zusammenhänge des Wirkprozesses vorliegen und keine Konstruktionswerkzeuge existieren, die diese Zusammenhänge adäquat beschreiben. Die am Institut für Textiltechnik der RWTH Aachen (ITA) im Projekt "IndiTexPlant" erzielten Ergebnisse bieten erstmals die Möglichkeit, das virtuelle Produktdesign in Kombination mit der Jacquard-Stricktechnologie in eine digitale Produktentwicklung vom medizinischen Bilddatensatz über das Topologiemodell der rekonstruierten Produktgeometrie bis hin zur Ableitung der Musterung für das textile Produkt zu übertragen (siehe Abbildung 1).

AutorInnen: Tobias Lauwigi Author, Kai-Chieh Kuo Co-Author

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Medtech Textilimplantat Medizin

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

28.09.2022

Filterung von Abgasen von Holzfeueröfen auf Basis neuartiger textiler Filtersysteme

Nachhaltigkeit Technische Textilien Haus- und Heimtextilien

Zusammenfassung

Gasförmige und vor allem partikelförmige Emissionen aus handbeschickten Holzöfen haben einen nicht unerheblichen Anteil an der Luftverschmutzung in Deutschland. Vor allem ultra-feine Rußpartikel und organische Schadstoffe wie polyzyklische aromatische Kohlenwasserstoffe werden häufig in hohen Anteilen emittiert. Die Freisetzung dieser Schadstoffe hat negative toxikologische und klimatische Konsequenzen für Mensch und Umwelt. Andererseits gewinnen erneuerbare biogene Festbrennstoffe aufgrund der Knappheit fossiler Rohstoffe für die regenerative Wärmebereitstellung zunehmend an Bedeutung.

Bericht

In Anbetracht dieser Problemstellung forschen an der RWTH Aachen University das Institut für Textiltechnik (ITA) und das Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER) gemeinsam mit der Skantherm GmbH & Co. KG und der Culimeta Textilglas-Technologie GmbH & Co. KG im Rahmen des FNR-Projekts „PartEX4Abholz“ an der Entwicklung eines neuen, hocheffizienten Abscheiders, der die partikelförmigen (festen und flüssigen) Emissionen aus dem Abgas von handbeschickten Holzöfen abscheidet und sequestriert. Der innovative Ansatz besteht in der Nutzung neuartiger Filtersysteme auf Basis textiler Strukturen.

Im Gegensatz zu den auf dem Markt erhältlichen E-Abscheidern erzeugt die zu entwickelnde Filterlösung nicht nur keine Rußflocken, es werden auch die groben Partikel durch das Filtersystem effizient im Filtermedium gespeichert. Außerdem wird eine hohe Abscheideleistung gegenüber flüchtigen und kondensierten organischen Substanzen erreicht. Die Herausforderung liegt dabei nicht nur in der Abscheidung der prozessimmanenten ultrafeinen (< 100 nm) Partikel durch Diffusionsabscheidung an sich, sondern vielmehr das Erreichen einer hohen und damit wirtschaftlichen Standzeit (hohe Speicherkapazität).

Unter Einsatz des neuen Filtersystems sollen die emittierten Partikel und Stäube von Holzfeueröfen gemäß dem Umweltzeichen "Der Blaue Engel" auf 15 mg/m³ reduziert werden. Mit ersten Projektergebnissen wird im ersten Quartal 2023 gerechnet.

AutorInnen: Maryam Sodagar, M.Sc.

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

05.09.2022

Development of near-net-shape woven, curved profile preforms

Technische Textilien

Zusammenfassung

At the ITM, the simulation-supported development and weaving implementation of integrally manufactured curved profile preforms with requirement-oriented cross-sectional changes along the profile length for the reinforcement of shell-shaped FRP components was carried out in the IGF project 20903 BR (Curved Profile Preforms).

Bericht

At the ITM, the simulation-supported development and weaving implementation of integrally manufactured curved profile preforms with requirement-oriented cross-sectional changes along the profile length for the reinforcement of shell-shaped FRP components was carried out in the IGF project 20903 BR (Curved Profile Preforms).

AutorInnen: Nuss, Dominik Huỳnh, Thị Anh Mỹ Gereke, Thomas Hoffmann, Gerald Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.09.2022

Entwicklung endkonturnah gewebter, gekrümmter Profilpreformen

Technische Textilien

Zusammenfassung

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

Bericht

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

AutorInnen: Nuss, Dominik Huỳnh, Thị Anh Mỹ Gereke, Thomas Hoffmann, Gerald Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM