Textination Newsline

Zurücksetzen
Bild: Gaharwar Laboratory
13.12.2022

Neue Tinten für 3D-druckbare, tragbare Bioelektronik

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Flexible Elektronik hat die Entwicklung von Sensoren, Aktoren, Mikrofluidik und Elektronik auf flexiblen, konformen und/oder dehnbaren Trägerschichten für tragbare, implantierbare oder einzunehmende Anwendungen ermöglicht. Diese Geräte haben jedoch im Vergleich zum menschlichen Gewebe sehr unterschiedliche mechanische und biologische Eigenschaften und können daher nicht in den menschlichen Körper integriert werden.

Ein Forscherteam an der Texas A&M University hat eine neue Klasse von Biomaterialtinten entwickelt, die die nativen Eigenschaften von hoch leitfähigem menschlichem Gewebe, ähnlich wie Haut, nachahmen, was für die Verwendung der Tinte im 3D-Druck unerlässlich ist.

Diese Biomaterial-Tinte nutzt eine neue Klasse von 2D-Nanomaterialien, die als Molybdändisulfid (MoS2) bekannt sind. Die dünnschichtige Struktur von MoS2 enthält Defektzentren, die es chemisch aktiv machen und in Kombination mit modifizierter Gelatine ein flexibles Hydrogel ergeben, vergleichbar mit der Struktur von Götterspeise.

„Die Auswirkungen dieser Arbeit sind für den 3D-Druck weitreichend", sagte Dr. Akhilesh Gaharwar, außerordentlicher Professor in der Abteilung für Biomedizinische Technik und Presidential Impact Fellow. "Diese neu entwickelte Hydrogeltinte ist hochgradig biokompatibel und elektrisch leitfähig und ebnet den Weg für die nächste Generation von tragbarer und implantierbarer Bioelektronik.”1

Die Tinte hat strukturviskose oder scherverdünnende Eigenschaften. Ihre nimmt Viskosität mit zunehmender Kraft ab, so dass sie im Inneren der Tube fest ist, aber beim Zusammendrücken eher wie eine Flüssigkeit fließt, ähnlich wie Ketchup oder Zahnpasta. Das Team hat diese elektrisch leitfähigen Nanomaterialien in eine modifizierte Gelatine eingearbeitet, um eine Hydrogeltinte mit Eigenschaften herzustellen, die für die Entwicklung von Tinte für den 3D-Druck wichtig sind.

„Diese 3D-gedruckten Geräte sind extrem elastisch und können zusammengedrückt, gebogen oder verdreht werden, ohne zu brechen", so Kaivalya Deo, Doktorand in der Abteilung für biomedizinische Technik und Hauptautor der Arbeit. „Darüber hinaus sind diese Geräte elektronisch aktiv, so dass sie dynamische menschliche Bewegungen überwachen können und den Weg für eine kontinuierliche Bewegungsüberwachung ebnen.”

Für den 3D-Druck der Tinte haben die Forscher im Gaharwar-Labor einen kostengünstigen, Open-Source 3D-Biodrucker mit mehreren Druckköpfen entwickelt, der voll funktionsfähig und anpassbar ist und mit Open-Source Tools und Freeware läuft. Dies ermöglicht es jedem Forscher, 3D-Biodrucker zu bauen, die auf seine eigenen Forschungsbedürfnisse zugeschnitten sind.

Die elektrisch leitfähige 3D-gedruckte Hydrogel-Tinte kann komplexe 3D-Schaltkreise erzeugen und ist nicht auf plane Designs beschränkt, so dass Forscher eine anpassbare Bioelektronik herstellen können, die auf patientenspezifische Anforderungen zugeschnitten ist.

Mit Hilfe dieser 3D-Drucker konnte Deo elektrisch aktive und dehnbare elektronische Geräte drucken. Diese Geräte weisen außergewöhnliche Dehnungsmessfähigkeiten auf und können für die Entwicklung anpassbarer Überwachungssysteme verwendet werden. Dies eröffnet ebenfalls neue Möglichkeiten für die Entwicklung dehnbarer Sensoren mit integrierten miroelektronischen Komponenten.

Eine der möglichen Anwendungen der neuen Tinte ist der 3D-Druck elektronischer Tätowierungen für Patienten mit Parkinson. Die Forscher stellen sich vor, dass ein gedrucktes E-Tattoo die Bewegungen des Patienten, einschließlich des Zitterns, überwachen kann.

Dieses Projekt wurde in Zusammenarbeit mit Dr. Anthony Guiseppi-Elie, Vizepräsident für akademische Angelegenheiten und Personalentwicklung am Tri-County Technical College in South Carolina, und Dr. Limei Tian, Assistenzprofessor für Biomedizintechnik an der Texas A&M University, durchgeführt.
Die Studie wurde vom National Institute of Biomedical Imaging and Bioengineering, dem National Institute of Neurological Disorders and Stroke und dem Texas A&M University President's Excellence Fund finanziert. Ein vorläufiges Patent auf diese Technologie wurde in Zusammenarbeit mit der Texas A&M Engineering Experiment Station angemeldet.

1 Die Studie wurde bei ACS Nano veröffentlicht.

Quelle:

Alleynah Veatch Cofas, Texas A & M University